Basic Properties of Circulant Matrices and Anti-Circular Matrices

نویسندگان
چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Basic Properties of Circulant Matrices and Anti-Circular Matrices

For simplicity, we adopt the following convention: i, j, k, n, l denote elements of N, K denotes a field, a, b, c denote elements of K, p, q denote finite sequences of elements of K, and M1, M2, M3 denote square matrices over K of dimension n. Next we state two propositions: (1) 1K · p = p. (2) (−1K) · p = −p. Let K be a set, let M be a matrix over K, and let p be a finite sequence. We say that...

متن کامل

Computation of the q-th roots of circulant matrices

In this paper, we investigate the reduced form of circulant matrices and we show that the problem of computing the q-th roots of a nonsingular circulant matrix A can be reduced to that of computing the q-th roots of two half size matrices B - C and B + C.

متن کامل

Application of Circulant Matrices

A k x k matrix A = [aU lover a field F is called circulant if aij = a (j-i) mod k' A [2k ,k l linear code over F = GF (q) is called double-circulant if it is generated by a matrix of the fonn [I A l, where A is a circulant matrix. In this work we ftrst employ the Fourier transform techJ nique to analyze and construct se:veral families of double-circulant codes. The minimum distance of the resul...

متن کامل

On circulant and two-circulant weighing matrices

We employ theoretical and computational techniques to construct new weighing matrices constructed from two circulants. In particular, we construct W (148, 144), W (152, 144), W (156, 144) which are listed as open in the second edition of the Handbook of Combinatorial Designs. We also fill a missing entry in Strassler’s table with answer ”YES”, by constructing a circulant weighing matrix of orde...

متن کامل

Circulant Hadamard Matrices

Note. The determinant of a circulant matrix is an example of a group determinant, where the group is the cyclic group of order n. In 1880 Dedekind suggested generalizing the case of circulants (and more generally group de­ terminants for abelian groups) to arbitrary groups. It was this suggestion that led Frobenius to the creation group of representation theory. See [1] and the references therein.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Formalized Mathematics

سال: 2008

ISSN: 1898-9934,1426-2630

DOI: 10.2478/v10037-008-0043-x